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Abstract. We investigate the connection of lattice calculations of moments of isovector parton distributions
to the physical regime through extrapolations in the quark mass. We consider the one-pion loop renor-
malisation of the nucleon matrix elements of the corresponding operators and thereby develop formulae
with which to extrapolate the moments of the unpolarised, helicity and transversity distributions. These
formulae are consistent with chiral perturbation theory in chiral limit and incorporate the correct heavy-
quark limits. In the polarised cases, the inclusion of intermediate states involving the ∆-isobar is found to
be very important. The results of our extrapolations are in general agreement with the phenomenological
values of these moments where they are known, and for the first time we make reliable predictions for the
low moments of the isovector transversity distribution.

PACS. 12.38.Gc Lattice QCD calculations – 11.30.Rd Chiral symmetries

1 Introduction

Until recently, state of the art studies [1] of the moments of
parton distributions within lattice QCD have led to large
discrepancies with experimental data [2]. Lattice calcula-
tions are performed at quark masses much greater than
those of the physical light quarks. Consequently, an ex-
trapolation to the physical mass regime must be made
in order to compare with experiment. A naive linear ex-
trapolation results in values for the first three non-trivial
moments of the unpolarised u − d distribution that are
50% above the phenomenological values [2]. For the po-
larised distributions the results are no better; gA (the 0th
moment of ∆u−∆d) is significantly underestimated by a
linear extrapolation, while the lack of accuracy in the data
(both experimental and lattice) on higher moments pre-
cludes definitive statements. Such a large disagreement in
such basic hadronic observables casts doubt on the current
reliability of the lattice approach to hadronic physics.
We present an improved extrapolation scheme [3–6]

that for the first time resolves much of this discrepancy.
Using constraints from chiral symmetry and the heavy-
quark limit, we develop a formalism for the extrapolation
of the moments of the isovector, unpolarised, helicity and
transveristy distributions. These are related to the for-
ward nucleon matrix elements of various twist-2 operators
which are calculated on the lattice through the operator
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product expansion. In particular, we find that contribu-
tions from intermediate states involving the ∆-isobar are
large, and their effects cannot be ignored in any quanti-
tative analysis. With their inclusion, we are able to make
reliable, almost model-independent1 extrapolations of the
moments of parton distributions and make predictions for
the low-spin transversity moments which can be tested by
future measurements.

2 Pion-loop renormalisation of moments of
parton distribution functions

General constraints from the approximate chiral symme-
try of QCD lead to the appearance of non-analytic terms
in the quark mass expansion of many hadronic quantities.
In particular, the moments of quark distributions behave
as [8,9]

〈xn〉q,∆q,δq ∼ m2
π logm2

π, (1)

where the Gell-Mann–Oakes–Renner relation, mq ∼ m2
π,

has been used to express the quark mass in terms of the
pion mass. This behaviour arises from the infrared proper-
ties of the one-pion loop renormalisation of the matrix ele-
ments of the corresponding twist-2 operators Oq,∆q,δq (see

1 Results are independent of the shape of the pion-nucleon
form factor to 1-2% [7].
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Fig. 1. Lowest three non-trivial moments of the unpolarised
isovector parton distribution. Data are taken from various lat-
tice simulations (see ref. [5] for details). The linear extrapola-
tion (dashed-line) significantly overestimates the experimental
results (stars), whilst the extrapolation using eq. (3) is in rea-
sonable agreement.

ref. [5] for their definitions and further details). That is,

〈N |Oµ1...µn

i |N〉dressed =
Z2

Zi
〈N |Oµ1...µn

i |N〉bare , (2)

where Z2 is the nucleon wave function renormalisation and
Zi, i = q,∆q, δq, are the operator renormalisations arising
from πN , π∆, and π(N∆ transition) intermediate states.
In the case of the unpolarised moments, simple one-

loop calculations of the renormalisation using a variety
of form factors (cutoff, monopole, dipole) for the pion-
nucleon coupling all lead to a simple extrapolation formula

〈xn〉u−d = an

(
1 + cLNAm2

π log
m2

π

m2
π + µ2

)
+ bnm2

π , (3)

with three free parameters, an, bn, µ (cLNA is fixed by
chiral perturbation theory). Similar expressions are found
for the helicity and transversity moments in ref. [5]. The
parameter µ describes the physical scale of the pion source
[10] and ideally would be constrained by lattice data. How-
ever, until sufficiently accurate lattice data at low quark
masses are available, alternative methods (such as the one
used here) must be used to fix µ.
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Fig. 2. Lowest three non-trivial moments of the helicity isovec-
tor parton distribution. Curves shown are (dotted line) linear
extrapolation, (dashed-line) extrapolation using the polarised
analog of eq. (3) but ignoring ∆ contributions, and (solid lines)
extrapolations for varying values of the πN∆ coupling. (Data
as for fig. 1.)

As shown by the solid curves in fig. 1 this formula
provides an excellent description of the lattice data, the
experimental values of the moments and (with suitable
modification —see ref. [4]) the values known in the heavy-
quark limit. However, when a similar formula is applied
to the moments of the helicity distributions, the extrapo-
lation is considerably worse than a naive linear extrapo-
lation, as shown by the dashed lines in fig. 2.
When we turn to the moments of polarised parton

distributions, there is considerable evidence from phe-
nomenological models that suggests the ∆-resonance will
play an important role. Although the ∆ contributions
formally enter at higher order in mπ, the coefficients of
these next-to-leading non-analytic terms are large, and
they cannot be ignored in any quantitative analysis. This
is clearly demonstrated by fig. 3 where the pion mass
dependence of the one-loop renormalisation of helicity
matrix elements is shown calculated with a dipole form
factor with varying values of the πN∆ coupling, gπN∆.
Full details are given in ref. [5]. For these helicity (and
transversity) operator matrix elements the difference be-
tween gπN∆/gπNN = 0 (no ∆) and gπN∆/gπNN = 2
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Fig. 3. One-loop renormalisation of the nucleon matrix el-
ements of the polarised, isovector, twist-2 operators using a
dipole form factor (Λ = 0.8 GeV) and varying values of the
coupling ratio gπN∆/gπNN . The shaded region corresponds to
variation of the Weinberg-Tomozawa coupling —see ref. [5].

Table 1. Values of the unpolarized, helicity and transversity
moments, extrapolated to the physical pion mass using eq. (3).
For comparison, experimental values of the moments, where
known [2], are also listed.

Moment Experimental Extrapolated

〈x〉u−d 0.145(4) 0.17(3)
〈x2〉u−d 0.054(1) 0.05(2)
〈x3〉u−d 0.022(1) 0.02(1)
〈1〉∆u−∆d 1.267(4) 1.12(8)
〈x〉∆u−∆d 0.210(25) 0.27(3)
〈x2〉∆u−∆d 0.070(11) 0.14(4)
〈1〉δu−δd ? 1.22(8)
〈x〉δu−δd ? 0.5(1)

(phenomenological value) is up to 15% —much greater
than in the unpolarised case where the overall effect is
less than 2% over the entire mass range studied here.
In order to incorporate these effects into the extrap-

olations of lattice data, we calculate the required renor-
malisations for the phenomenologically preferred dipole
parameter, Λ = 0.8 GeV, and for varying values of the
coupling ratio gπN∆/gπNN . We then determine µ by fit-
ting to the calculated renormalisations using eq. (3) (with
cLNA calculated in the ∆M = M∆ − MN → 0 limit).
With µ thus fixed, we then use the lattice data to deter-
mine the fit parameters an and bn. The resulting curves
are then shown in each panel of fig. 2 for gπN∆/gπNN = 0
(no ∆),

√
72/25, 1.85 and 2 2.

Table 1 shows the resulting extrapolated values along
with uncertainties resulting from the πN∆ and Weinberg-
Tomozawa couplings, statistical and (estimated) system-
atic errors. Also listed are the experimental moments
where known [2]. It is evident that the agreement between
the experimental and extrapolated results is very good for

2 Reasonable variation of the strength of the Weinberg-
Tomozawa contact term is also included —see ref. [5] for de-
tails.

the unpolarised moments, but significantly worse in the
helicity sector. The extrapolated value of gA is 10% below
its experimental value, with 8% errors. However, there is
some evidence that lattice simulations of this quantity are
particularly susceptible to finite-volume effects [11]. For
the higher helicity moments, statistical errors on the lat-
tice data are not yet sufficiently small to make definitive
statements. Since the renormalisation of the transversity
matrix elements is almost identical to that of the helicity
matrix elements, we are also able to make an estimate of
the values of these moments which can be compared with
future experimental determinations.

3 Conclusion

We have investigated the extrapolation of lattice data on
the low moments of the isovector, unpolarised, helicity
and transversity parton distribution functions. In the case
of the polarised moments, the ∆-isobar, even though not
leading non-analytic, was found to play a significant role
and its inclusion in the operator renormalisation and ex-
trapolation procedure is vital. With this accounted for,
we have the surprising result that the effect of the non-
analytic behaviour is strongly suppressed for the polarised
moments, and a naive linear extrapolation of the moments
provides quite a good approximation to the more accurate
form.
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Phys. Rev. D 53, 2317 (1996); M. Göckeler et al., Nucl.
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